quinta-feira, 20 de setembro de 2018

Em 1915 (Sitzungsberichte Preussische Akademie der Wissenchaften 2, p.  844), o físico germano-suíço-norte-americano Albert Einstein (1879-1955; PNF, 1921) formulou a Teoria da Relatividade Geral (TRG) traduzida pela equação de Einstein, onde  () é o tensor métrico Riemanniano é o tensor geométrico de Ricci é o tensor de Einstein,  é o tensor energia-matéria é a constante de gravitação de Einsteiné a constante de gravitação de Newton-Cavendishé a velocidade da luz no vácuo, e . Observe-se que, segundo essa equação, quando um corpo “cai” na Terra, por exemplo, ele não é puxado pela atração gravitacional Newtoniana de nosso planeta e sim, ele se desloca na curvatura do espaço-tempo produzida pela presença da massa da Terra, isto é, ele se movimenta na geodésica da Geometria Riemanniana () induzida pela massa terrestre. Logo depois, em 1916 (Sitzungsberichte Preussische Akademie der Wissenchaften 2pgs. 189; 424), o astrônomo alemão Karl Schwarszchild (1873-1916) encontrou uma solução rigorosa para essa equação Einsteniana, ao considerar uma carga puntiforme colocada em um campo gravitacional isotrópico e estático. Essa solução ficou mundialmente conhecida como a métrica de Schwarszchild (vide verbete nesta série).


  Em 1917 (Sitzungsberichte Preussische Akademie der Wissenchaften 1, p.  142), Einstein encontrou uma solução para a sua equação que, no entanto, diferentemente da solução encontrada por Schwarszchild, era dinâmica. Contudo, por essa época, não havia nenhuma evidência experimental sobre a dinâmica do Universo, isto é, se o seu raio dependia do tempo. Então, para contornar essa dificuldade, ele formulou a hipótese de que as forças entre as galáxias eram independentes de suas massas e que variavam na razão direta da distância entre elas, isto é, havia uma “repulsão cósmica”, além, é claro, da “atração gravitacional Newtoniana”. Matematicamente, essa hipótese significava acrescentar um termo ao primeiro membro de sua equação – o famoso termo cosmológico ou termo de repulsão cósmica (). Desse modo, Einstein postulou que o Universo era estático e, usando sua equação, demonstrou ser o mesmo finito e de curvatura Riemanniana positiva ou esférica. Em virtude disso, o seu modelo cosmológico ficou conhecido como o Universo Cilíndrico de Einstein, em que o espaço é curvo, porém o tempo é retilíneo. Conforme veremos mais adiante, hoje esse termo cosmológicotem um outro significado físico (, sendo  a densidade de energia do vácuo quântico) e é acrescentado ao segundo membro da equação Einsteniana visto acima, ou seja, essa equação passa a ter a forma , para poder explicar a aceleração da expansão do Universo, observada em 1998, nas supernovas do tipo Ia, que são explosões termonucleares de estrelas anãs brancas com  vez a massa do Sol (vide verbete nesta série).




[EPG = d[hc][T/IEEpei [pit]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]

= ,  [EPG = d[hc][T/IEEpei [pit]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]


[EPG = d[hc][T/IEEpei [pit]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]




[EPG = d[hc][T/IEEpei [pit]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]

p it = potenciais de interações e transformações.
Temperatura dividido por isótopos e estados físicos e estados potenciais de energias e isotopos = emissões, fluxos aleatórios de ondas, interações de íons, cargas e energias estruturas, tunelamentos e emaranhamentos, transformações e decaimentos, vibrações e dilatações, potencial eletrostático, condutividades, entropias e entalpias. categorias e agentes de Graceli.

h e = índice quântico e velocidade da luz.

[pTEMRlD] = POTENCIAL TÉRMICO, ELÉTRICO, MAGNÉTICO, RADIOATIVO, luminescência, DINÂMICO]..


EPG = ESTADO POTENCIAL GRACELI.

Nenhum comentário:

Postar um comentário